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Abstract

Location problems concern a wide set of /elds where it is usually assumed that exact data are known.
However, in real applications, the location of the facility considered can be full of linguistic vagueness, that
can be appropriately modelled using networks with fuzzy values. Thus fuzzy location problems on networks
arise; this paper deals with their general formulation and the description of the ways to solve them. Namely,
we show the variety of problems that can be considered in this context and, for some of them, we propose
the most operative approaches for their solution.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

A location problem deals with the choice of a set of points for establishing certain facilities in
such a way that, taking into account di7erent criteria and verifying a given set of constraints, they
optimally ful/ll the needs of the users.

Some of the main location problems are modelled on a network or a graph. Thus, the vertices
of the network represent the points where the users that demand the facility are, and the edges
reveal the existence of a certain link between the vertices (for instance, roads joining cities). In
general, the graphs represent deterministic situations where the points of demand and the links
joining them are known.
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Albeit from a theoretical point of view, we can say that the application contexts of all the location
problems are identical (their de/ning elements are the same: a set of nodes, a set of edges and a
distance matrix), though it is not clear whether these considerations are too simplistic. So, despite
its formal correctness and the wide set of di7erent models that can be considered, there is a wide
range of real situations that, included perfectly in the problems that have been considered in this
area, have not been studied in the specialized literature.

We speci/cally refer to the di7erent possibilities that, with regard to the addressing of the problem,
can arise when, besides the basic characteristics de/ning the problem, one adds a new feature which
could be referred to as “the environment”. To clarify this point, let us brieFy think of the concept
of vertex associated to a certain road map. Let us assume that we have a road map at hand, and
that we are looking for a determined route. It is clear that in such a case, not all the points present
on the map will have the same importance with regard to our interests; that is, it is patent that
although all the vertices on the map may represent towns, not all of them will have the feature of
provincial capital or village. From this point of view, it is evident that all the points on the map, and
even all of those which frequently do not appear because of di7erent reasons, may be considered
as towns. However, not all those points will verify the property of being a town in the same way.
The di7erence between a town with 25,000 inhabitants and another with 2500 inhabitants is obvious,
but it is also obvious that both towns are settlements that verify the property “being a town” to a
degree which in each case may be di7erent. The possibility of including, in this simple case, all the
possible settlements we are interested in, is usually made in a very strict way: we include all those
nodes verifying exactly a given criterion (for instance number of inhabitants greater than 1000), and
we discard from the map all those which do not verify that criterion. The concept of fuzzy set, and
all the corresponding theory based on it, serves to bridge this misfunctioning since it allows us to
introduce and handle sets for which the veri/cation of the property de/ning them is measured in a
graded manner, [0; 1]-valued, and not exclusively in terms of 0; 1. In this context of graphs it makes
sense, therefore, to consider fuzzy sets of vertices, so that each vertex veri/es the assumed property
to a certain degree. This same argument can be followed in reference to the edges of the graph.
We can take, for example, the fact that the concept of road is basically a qualitative concept and,
therefore, both a highway or a forest track are roads, each of them accomplishing the property of
being a road to a di7erent degree. Consequently, it also makes sense to consider fuzzy sets of edges,
and much more generally, in spite of this set being fuzzy or not, and in spite of having a fuzzy set
of vertices or not, to consider that the weights associated to the edges of the graph are de/ned by
means of fuzzy numbers; that is, to consider that a fuzzy weight function is de/ned on the edges. It
is patent that, except for very concrete cases, phrases like “it is not far, but it takes too long”, “the
road is very bad, but the trip is worth while”, etc., are very frequent in day-to-day life. However,
and in spite of the (vague) reality that they express, they are usually theoretically modelled in such
a way that the vague concepts involved are modelled as numerical ones, when it seems much more
convenient, in order not to lose the former vague nature of the problem, to model them properly
establishing that imprecise nature they have.

A preliminary description of these aforementioned possibilities, in relation to location problems in
graphs, is the essence of this work which, therefore, is structured as follows. In the next section, the
most important concepts on location problems are introduced and the more relevant location models
on fuzzy graphs are described. Then, in Section 3, with regard to exploring operative methods
for solving the above models, some basic concepts on fuzzy graphs are presented. The solution
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methodologies here proposed are also enumerated and described, and some of them are exempli/ed
by using the well-known median problem. Finally, Section 4 is devoted to pointing out the main
conclusions and future research lines.

2. Fuzzy location on networks: some models

Let G = (V; E) be a not-oriented, simple and connected graph with vertex set V = {v1; v2; : : : ; vn}
and edge set E = {e1; e2; : : : ; em}. Each edge e∈E is a continuous in/nite and linear set of points
joining two vertices u; v∈V , named extremes of e that is represented by e∈ [u; v]. Associated with
each edge e∈E, there is a positive number l(e) that can represent the length of the edge, the time
needed to cover it, etc. In addition, associated to each vertex v∈V there is a weight w(v)¿0 that
is interpreted as the importance of that vertex. Let w(·) and l(·) be the corresponding weight and
length functions de/ned on V and E, respectively. The model is a network with four components:
N = (V; E; w; l).

A point x on an edge e∈ [u; v] is determined by a value �; 06�61, that represents the portion
of the edge between the extreme u and the point x. We will denote this point by xe(�). Following
this notation, the ends of the edge e are u= xe(0) and v= xe(1). The interior points are given by
I(e) = {x = xe(�) : 0¡�¡1}.

The two most representative problems in location theory on networks are the median and center
problems. In both of them, one must /nd the point of the network N that minimizes a function of
the weighted distance to the vertices of N . In the median problem, the function to be minimized is
the sum of the distances; in the center problem we want to minimize the maximum of the distances.
Therefore, the median problem and the center problem are, respectively, formulated by

min
x∈N

∑
v∈V

d(x; v)w(v) and min
x∈N

max
v∈V

d(x; v)w(v):

The /rst step in the solution of a location problem where all the points are possible solutions is to
/nd a /nite dominant set for the problem, i.e., a /nite set that includes, at least, an optimal solution to
the problem (see [9]). From the seminal paper of Hakimi [6], dominant /nite sets are known for the
median, consisting of the vertices, and for the center problem, that consists of the vertices and local
centers, i.e., interior points in equilibrium between two vertices. Given the matrix of distances, the
median is obtained in time O(n2) and the center in time O(nm log n). For the algorithmic resolution
of these problems, the calculation of the matrix of distances needs the greatest computational e7ort;
that means O(nm log n) operations (see [6]).

In order to consider a fuzzy context in these problems, we will need the concept of fuzzy graph.
Although the /rst de/nition of a fuzzy graph is due to Zadeh [15], it is generally assumed that
this concept was originally proposed by Rosenfeld [13]. Subsequently, a lot of papers related to this
concept have appeared and, namely, in [3] there is a summary of the main notions related with
this topic. Also in [11], a state-of-the-art can be found. In particular, we are here interested in the
median problem in a fuzzy context. This problem has been already described in part by Canos et al.
[1,2]. However, the point of view adopted in this work will be much more general.

Namely, given a reference graph, G = (V; E), we have a fuzzy network N , if there are appropriate
de/ned membership functions for all or some of the following elements of N : the vertex set V , the
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edge set E, the weights w of the vertices or the lengths l of the edges. Therefore, for the formulation
of the fuzzy location problems on a graph or network we can consider the following four alternatives
for the fuzzi/cation of the model where only one of the elements in the model (vertices V , edges E,
weights w or lengths l) is given using fuzzy techniques.

(1) Location problems with fuzzy vertices: They appropriately models situations where the demand
vertices verify a certain condition (for instance, being a relevant population) within a given
graph. Those problems on a graph, for which the set of demand vertices V is fuzzy, belong to
this kind of model.

(2) Location problems with fuzzy edges: They address a parallel version to the above model, suitable
when the edges E are present in the models with a given degree and are modelled by a fuzzy
set of pairs of vertices.

(3) Location problems with fuzzy weights: In a lot of situations, the information available does
not allow us to assign deterministic values to the weights that represent the importance of the
vertices. In those cases, in which, for instance, sentences appear like the weight of the vertex
v is about w, it is useful to consider that the weights in w(v) are fuzzy numbers.

(4) Location problems with fuzzy lengths: We now deal with location problems on a network
N = (V; E; w; l̃) where the lengths of the edges are not well known, and they are given by a
function l̃ of fuzzy values, l̃(e).

Obviously, the aforementioned classes can be combined giving rise to problems that belong simulta-
neously to two or more classes. So, we can consider location problems on a graph with both fuzzy
vertices and edges, problems with both fuzzy weights and lengths, and so on.

3. Solution methodologies

Below, we deal with the methodologies that are appropriate to solve the problems corresponding to
the models that are given in the above section. One way to solve these kinds of models is using the
�-cuts representation. The procedure consists of solving a /nite series of crisp problems associated
with the �-cuts.

In order to consider the concepts �-cuts on these problems we need some considerations. As the
fuzziness can a7ect simultaneously to a variety of the elements of the model (weights, edges, vertices,
length; : : :), and the universe of discourse for each of these elements is necessary di7erent, the fuzzy
element with respect to which we are considering the corresponding �-level must be speci/ed.

For the /rst two fuzzi/cations of the network model, the following concepts from the theory of
fuzzy graphs will be useful. Consider the de/nition of fuzzy graph in [13].

De�nition 1. A fuzzy graph (f-graph) is the structure G = (V; E; �; �), where V is the vertex set,
� :V → [0; 1] is the membership function of the vertex set, E is the edge set and � :E→ [0; 1] is the
membership function of the edge set, where it veri/es that

∀u; v ∈ V : max
e∈[u;v]

�(e) 6 min{�(u); �(v)}:
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De�nition 2. The �-cut, �∈ [0; 1], of an f-graph G = (V; E; �; �) is the classical graph G� = (V�; E�)
with

V� = {v ∈ V : �(v) ¿ �} and E� = {e ∈ E : �(e) ¿ �}:

De�nition 3. A path P between vertices u and v in an f-graph G = (V; E; �; �) is a sequence
e1; e2; : : : ; ek ∈E of edges that veri/es:

xe1(0) = u and xek (1) = v;

xei(1) = xei+1(0) ∀i = 1; : : : ; k − 1:

Thus, the strength of a path P in graph G is the minimum of the membership functions of its
edges, that is

�(P) = min
ei∈P

�(ei):

For every two vertices u and v, let P(u; v) denote the set of paths between u and v.

De�nition 4. Let G = (V; E; �; �) be an f-graph and u; v∈V . The connectedness level between u
and v in G is the value

C(u; v) = max
P∈P(u;v)

�(P):

If u= v then C(u; v) =∞.

De�nition 5. Let G = (V; E; �; �) be an f-graph. The connectedness level of G is the value

C(G) = min
u;v∈V

C(u; v):

This is an extension of the strength de/ned in [4,10].
For instance, in the f-graph shown in Fig. 1, the computations for the connectedness between

vertices v1 and v4 are in Table 1.
Since the location problems on networks have to be de/ned on a connected graph, one needs to

be sure that the corresponding �-cuts provide connected graphs. In order to formalize this idea, we
use the notion of connectedness level C(G) of the graph G. From all of the problems that appears
in this framework, in the following section we will deal with those that provide the most concrete
solution methodologies.

3.1. Location problems with fuzzy vertices or edges

One way to solve these kinds of models consists of solving the /nite series of crisp problems
associated with the �-cuts for �∈ (0; C(G)]. The solution procedure (see [3,5]) consists of solving
the location problem in G�i , for the corresponding values �i that give the intervals where the cor-
responding crisp models are constant. It is convenient to solve the crisp problems for the series of
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Fig. 1. An f-graph.

Table 1
Connectedness in an f-graph

[u; v] l(u; v) �(u; v) P(v1; v4) �(Pi)

e1 = [v1; v2] (1:5; 2; 2:5) 0:3 P1 = (e5) 0.2
e2 = [v2; v4] (1:5; 2; 3) 0:6 P2 = (e1; e2) 0.3
e3 = [v1; v3] (1; 2; 3) 0:4 P3 = (e3; e4) 0.4
e4 = [v3; v4] (0:5; 1; 1:5) 0:5 C(u; v) = 0:4
e5 = [v1; v4] (3; 4; 5) 0:2 C(G) = 0:4

decreasing values �1; : : : ; �k because the vertices are successively included in the computation of the
corresponding minima. For solving the location problems, we must use the algorithms that are easily
adapted to the updating of the distances when new edges appear. This is so important because the
greatest computational e7ort in the solution of these location problems stems from the computation
of the matrix distance.

3.2. Location problems with fuzzy weights and lengths

Since, in these problems, the objective function provides a fuzzy value for every feasible solution,
the methodologies to solve them consist of applying the well-known comparing functions for fuzzy
numbers (see [7]) to determine the location with minimum fuzzy objective function.

For instance, consider the problem of the median in a crisp graph with fuzzy weights. If we
assume that the weights are triangular fuzzy numbers w(v) = (wl(v); wm(v); wr(v)), the membership
function of the objective is obtained directly from Proposition 2 in [8]. So if we use the third index
of Yager, the optimal location for the median can be obtained by solving the problem

min
x∈N

∑
v∈V

d(x; v) · 1
4

(wl(v) + 2wm(v) + wr(v)): (1)

Note that (1) corresponds to the problem of the median in the graph G = (V; A) with weights
1=4(wl(v) + 2wm(v) + wr(v)) for the vertices. An analogous result can be stated for the /rst index
of Yager and similar properties can be obtained for other linear ordering functions.
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If the model includes fuzzy lengths, we need to analyze the properties of the fuzzy distance
between points of the graph so as to be an optimal location for the facility. In the following, we
assume that the linear ordering function is given and will be denoted by f.

3.2.1. Finite dominating set for the median
As we said above, the /rst step to solve these problems is to /nd a /nite dominant set. We

show how to get the /nite dominant set for the median problem in a network with fuzzy lengths. A
network with fuzzy lengths N = (V; E; w; l̃) consists of a network with vertex set V = {v1; v2; : : : ; vn},
edge set E = {e1; e2; : : : ; em} and crisp vertex weights w where the length of every edge ei is given
by a fuzzy number l̃(ei).

The operation of the insertion of a point in a network allows the extension of concepts about
vertices to points.

De�nition 6. Given a network with fuzzy lengths N = (V; E; w; l̃) and a point x = xe(�) on e∈ [u; v],
the insertion of x in N is an operation that provides a new graph N·x = (V·x; E·x; w·x; l̃·x) where the
new vertex set is V·x =V ∪{x} with new weights given by w·x(x) = 0 and w·x(v) =w(v) ∀v∈V ; and
the new edge set is

E·x = (E − {e}) ∪ {e1; e2};

where the two new edges are [u; x] = {e1} and [x; v] = {e2}, and the new lengths given by

l̃·x(e1) = �l̃(e);

l̃·x(e2) = (1 − �)l̃(e);

l̃·x(e′) = l̃(e′) ∀e′ ∈ E ∩ E·x:

Note that l̃·x(e) =∞ is another way to exclude e from the graph. The insertion of points in the
network with fuzzy length allows us to extend the concepts about vertices to be applied to points
on the network (see Fig. 2 and Table 2).

Fig. 2. Insertion of a point in a network with fuzzy lengths.
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Table 2
Lengths of the new graph

[u; v] l(u; v) [u; v] l·x(u; v)

e1 = [v1; v2] (1:5; 2; 2:5) e1 = [v1; v2] (1:5; 2; 2:5)
e2 = [v2; v4] (1:5; 2; 3) e2 = [v2; v4] (1:5; 2; 3)
e3 = [v1; v3] (1; 2; 3) e3 = [v1; v3] (1; 2; 3)
e4 = [v3; v4] (0:5; 1; 1:5) e4 = [v3; v4] (0:5; 1; 1:5)
e5 = [v1; v4] (3; 4; 5) e6 = [v1; xe(�)] (0:6; 0:8; 1:0)

e7 = [xe(�); v4] (2:4; 3:2; 4:0)

Let P be a path between vertices u and v in network N = (V; E; w; l̃). The length of the path P is

l̃(P) =
∑
ei∈P

l̃(ei):

To avoid dispersion diPculties, and with not formal restrictions, we consider this fuzzy number has
left and right margins equal to the respective maximum and minimum of the corresponding fuzzy
numbers. Then, let P(vi; vj) be the set of all the paths between the vertices vi and vj, and consider
the linear ordering function f for fuzzy numbers that have been selected. Then the shortest path
between two vertices is de/ned as follows.

De�nition 7. A path P∗ ∈P(vi; vj) is the shortest path between vi and vj if and only if

l̃(P∗) = min{l̃(P); P ∈ P(vi; vj)}:

Note that the computation of this value must be done through the ordering function f that has
been previously selected. Thus, depending on this function, di7erent results can be obtained because
di7erent shortest paths will be obtained. From now on Pmin(vi; vj) will denote the set of shortest
paths between vi and vj.

De�nition 8. The distance, d̃(vi; vj), between the vertices vi and vj is the length of any shortest path
between vi and vj. That is

d̃(vi; vj) = l̃(P) ∀P ∈ Pmin(vi; vj):

The distance between two points on the network N = (V; E; w; l̃) is de/ned as follows.

De�nition 9. The distance, d̃(x; y), between the points x and y on the graph N = (V; E; w; l̃) is the
distance between the vertices x and y of the graph

(N·x)·y = ((V·x)·y; (E·x)·y; (w·x)·y; (l·x)·y):
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3.2.2. Properties of the distance
Given an edge e∈ [u; v] and a point z, non-interior to e, the distance from x = xe(�) (06�61)

to z is

d̃(xe(�); z) = min{d̃(u; z) + �l̃(e); d̃(v; z) + (1 − �)l̃(e)}: (2)

From these de/nitions we have the following properties.

Proposition 10. The distance between the points of the edge e∈ [u; v] and the non-interior point
z is

d̃(xe(�); z) =
{

d̃(u; z) + �l̃(e); 0 6 � 6 �e
z ;

d̃(v; z) + (1 − �)l̃(e); �e
z 6 � 6 1;

where

�e
z =

f(d̃(v; z) + l̃(e) − d̃(u; z))

2f(l̃(e))
: (3)

Proof. The distance between xe(�) and the point z is given by formula (2). So, this distance will
be d̃(u; z) + �l̃(e) while

d̃(u; z) + �l̃(e) 6 d̃(v; z) + (1 − �)l̃(e):

This last condition is true when

f(d̃(u; z) + �l̃(e)) 6 f(d̃(v; z) + (1 − �)l̃(e)):

That is, if �6�e
z . Note that 06�e

z61.

Proposition 11. Let a point z non-interior to edge e∈ [u; v] and �e
z given by formula (3). One

veri&es

(1) if �e
z = 0 then the function d̃(xe(·); z) is linear and decreasing on [0; 1] with slope −l̃(e),

(2) if �e
z = 1 then the function d̃(xe(·); z) is linear and increasing on [0; 1] with slope l̃(e),

(3) if 0¡�e
z ¡1 then the function d̃(xe(·); z) is linear and increasing on [0; �e

z ] with slope l̃(e), and
linear and decreasing on [�e

z ; 1] with slope −l̃(e).

We use the de/nition of a concave fuzzy function given in [14].

De�nition 12. A fuzzy function F is concave in " if and only if,

F(#�1 + (1 − #)�2) ¿ #F(�1) + (1 − #)F(�2) ∀�1; �2 ∈":

Proposition 13. The function d̃(xe(·); z) is concave in [0; 1].

Proof. We show that ∀�1; �2 ∈ [0; 1], one veri/es

F(#�1 + (1 − #)�2) ¿ #F(�1) + (1 − #)F(�2)

in all the possible cases for �e
z , i.e., �e

z = 0, �e
z = 1 and 0¡�e

z ¡1.
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(1) If �e
z = 0, then

d̃(xe(#�1 + (1 − #)�2); z) = d̃(v; z) + (1 − (#�1 + (1 − #)�2))l̃(e) (4)

and

#d̃(xe(�1); z) + (1 − #)d̃(xe(�2); z)

= d̃(v; z) + (#(1 − �1) + (1 − #)(1 − �2))l̃(e): (5)

Using the ordering function f for fuzzy numbers and with some algebra with real numbers it
follows that expressions (4) and (5) are the same.

(2) The proof for �e
z = 1 is similar to the last case.

(3) If 0¡�e
z ¡1, we consider three subcases:

(a) �16�e
z and �26�e

z . The situation is like in the case �e
z = 1.

(b) �1¿�e
z and �2¿�e

z . The situation is like in the case �e
z = 0.

(c) �16�e
z and �2¿�e

z . Assume that #�1 + (1− #)�26�e
z (if #�1 + (1− #)�2¿�e

z it is the mirror
case). Like above, using the ordering function f for fuzzy numbers and with some algebra
we obtain that

d̃(xe(#�1 + (1 − #)�2); z) ¿ #d̃(xe(�1); z) + (1 − #)d̃(xe(�2); z)

if and only if

�2 ¿
f(d̃(v; z) + l̃(e) − d̃(u; z))

2f(l̃(e))
= �e

z

that is true.

Using the above properties, we obtain the following result that provides a /nite dominant set for
the median problem with fuzzy lengths. Based on this result we will provide a solution method.

Theorem 14. Let N = (V; E; w; l̃) be a network with fuzzy lengths. There is at least one vertex in
V that is a median of N .

Proof. Since the multiplication by a positive scalar of a concave function is also a concave function,
the sum of concave functions is also a concave one and, in addition, the minimum of any concave
function in an interval is reached at one of its extremes, the proof easily follows.

This justi/es the usual rule applied by the taxi drivers that always want the taxi stops at the
corner of the streets.

3.3. An example

Let us assume that we are concerned with the necessity of suggesting the places in which taxi stops
must be located in a certain town. The geographical areas in which these taxi stops could be located
is vaguely known, but the exact place where /nally they will be is unknown. Edges (streets) will
have associated on the one hand fuzzy weights because the weights represent the time of traversing
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Fig. 3. Graph G for the example.

the streets, and on the other they will have some membership degree giving the accomplishment
level of a prescribed property, as for instance may be “good street”. Under these conditions, in order
to illustrate the methodology developed here, let us consider the following example.

Let G be the graph consisting of three vertices {v1; v2; v3} that represents three towns and three
edges joining each pair of vertices that represents three alternative paths between them (see Fig. 3).
The three edges joining vertices vi and vj are denoted by ek

ij for k = 1; 2; 3. We have vague information
on the length of the roads and on their quality.

For each edge, we have the fuzzy length and the fuzzy membership value for some quality
condition, for instance to be a good road. We want to get the median of the corresponding fuzzy
model. We can consider three situations:

(1) The length of each road is given but the property to be a good road is evaluated by a membership
function. This is a model with fuzzy set of edges.

(2) The length of each edge is represented by a fuzzy number, but we consider that all the roads
are good enough, i.e., the membership function is 1 for all of them.

(3) The length of each road is given by a fuzzy number and set of good roads is a fuzzy set.

To solve the last case we get in Table 3, for each possible path, the fuzzy length, the membership
for the set of good roads and the corresponding value for the third Yager index.

The connectedness level is 0:75. The values for � corresponding to the di7erent crisp graphs are
[0; 0:25]; (0:25; 0:5] and (0:5; 0:75]. A possible methodology is to solve the median problem for these
cuts. Note that they are not crisp median problems because for each cut, we have a crisp graph
with fuzzy lengths. These problems are solved using the ordering function corresponding to the third
Yager index.

Then, if �∈ [0; 0:25] then the median is v1, if �∈ (0:25; 0:5] then it is v2 and for �∈ (0:5; 0:75]
the edge [v1; v2] is the set of medians.

4. Conclusions and future research

In this work, we have considered some location problems on fuzzy graphs that appropriately model
several contexts that appear in real situations. Furthermore, we have proposed suitable methodologies
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Table 3

Vertex 2 Vertex 3

Path Length Strength Index Path Length Strength Index

e1
12 (1:5; 2; 2:5) 0:25 2:000 e1

13 (1; 2; 3) 0:25 2:000
e2

12 (3; 4; 5) 0:50 4:000 e2
13 (4:5; 5; 6) 0:5 5:125

v e3
12 (4; 6; 8) 0:75 6:000 e3

13 (6; 7; 8) 0:75 7:000
e e1

13; e
1
32 (3; 5; 6:5) 0:25 4:875 e1

12; e
1
23 (3:5; 5; 6) 0:25 4:875

r e1
13; e

2
32 (4:5; 6; 8) 0:25 6:125 e1

12; e
2
23 (5; 6; 7) 0:25 6:000

t e1
13; e

3
32 (7; 9; 11) 0:25 9:000 e1

12; e
3
23 (7:5; 9; 10:5) 0:25 9:000

e e2
13; e

1
32 (6:5; 8; 9:5) 0:50 8:000 e2

12; e
1
23 (5; 7; 8:5) 0:5 6:875

x e2
13; e

2
32 (8; 9; 11) 0:25 9:250 e2

12; e
2
23 (6:5; 8; 10) 0:25 8:625

e2
13; e

3
32 (10:5; 12; 14) 0:50 12:125 e2

12; e
3
23 (9; 11; 14) 0:5 11:250

1 e3
13; e

1
32 (8; 10; 11:5) 0:50 9:875 e3

12; e
1
23 (6; 9; 11:5) 0:5 8:875

e3
13; e

2
32 (9:5; 11; 13) 0:25 11:125 e3

12; e
2
23 (7:5; 10; 13) 0:25 10:125

e3
13; e

3
32 (12; 14; 16) 0:75 14:000 e3

12; e
3
23 (10; 13; 16) 0:75 13:000

e1
23 (2; 3; 3:5) 0:5 2:875

e2
23 (3:5; 4; 5) 0:25 4:125

v e3
23 (6; 7; 8) 0:75 7:000

e e1
21; e

1
13 (2:5; 4; 5:5) 0:25 4:000

r e1
21; e

2
13 (6; 7; 8:5) 0:25 7:125

t e1
21; e

3
13 (7:5; 9; 10:5) 0:25 9:000

e e2
21; e

1
13 (4; 6; 8) 0:25 6:000

x e2
21; e

2
13 (7:5; 9; 11) 0:5 9:125

e2
21; e

3
13 (9; 11; 13) 0:5 11:000

2 e3
21; e

1
13 (5; 8; 11) 0:25 8:000

e3
21; e

2
13 (8:5; 11; 14) 0:5 11:125

e3
21; e

3
13 (10; 13; 16) 0:75 13:000

for solving the four basic models considered. However, other methodologies could be considered,
namely those obtained from the proposals in [12] to get the shortest paths in graphs with fuzzy
lengths. We are now studying this alternative approach.
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